SECRETARIA DE ESTADO DOS NEGÓCIOS DA SEGURANÇA PÚBLICA

POLÍCIA MILITAR DO ESTADO DE SÃO PAULO

Corpo de Bombeiros

INSTRUÇÃO TÉCNICA Nº 02/01

CONCEITOS BÁSICOS DE PROTEÇÃO CONTRA INCÊNDIO

SUMÁRIO

- 1 Objetivo
- 2 Aplicação
- 3 Referências normativas e bibliográficas
- 4 Termos e definições
- 5 Procedimentos

ANEXOS

- A Tabela de símbolos complementares
- B Tabela de símbolos gráficos

1 Objetivo

1.1 Esta Instrução Técnica tem por objetivo orientar e familiarizar os profissionais técnicos, e permitir um entendimento amplo sobre a Proteção Contra Incêndio nas edificações e áreas de risco, atendendo ao previsto no Decreto Estadual 46076/01.

2 Aplicação

2.1 Esta Instrução Técnica se aplica a todos os projetos e execuções dos Sistemas e Medidas de Segurança Contra Incêndio.

3 Referências normativas e bibliográficas

- 3.1 As seguintes fontes bibliografias foram consultadas:
- 3.1.1 Berto, A. Proteção contra Incêndio em estruturas de aço. In: Tecnologia de Edificações. São Paulo: Pini, nov/1988.
- 3.1.2 Berto, A. Segurança ao fogo em habitação de madeira de pinus spp/pressupostos básicos. In: Tecnologia de Edificações. São Paulo: Pini,nov/1988.
- 3.1.3 De Faria, M. M. In: Manual de Normas Técnicas do Corpo de Bombeiros Para Fins de Análise de Projetos (Propostas) de Edificações. São Paulo: CAES/PMESP, Dez/1998.

- 3.1.4 INSTRUCCION TECNICA 07.09. Sistemas de Espuma. Instalaciones Fijas (generalidades). ITSEMAP. Espanha: abr/89.
- 3.1.5 INSTRUCCION TECNICA 07.10. Instalaciones Fijas de CO₂: Generalidades. Sistemas de Inundacion. ITSEMAP. Espanha: nov/1986.
- 3.1.6 INSTRUCCION TECNICA 07.11. Sistemas Fijos de CO₂: Sistemas de aplicacion Local Y otros. ITSEMAP. Espanha: abr/1987.
- 3.1.7 IPT. 1° relatório Elaboração de requisitos técnicos relativos às medidas de proteção contra incêndio. In: RELATÓRIO N° 28826.São Paulo: Nov/90.
- 3.1.8 IPT. 2° relatório Elaboração de requisitos técnicos relativos às medidas de proteção contra incêndio. In: RELATÓRIO N° 28.904. São Paulo: Dez/90.
- 3.1.9 IPT. 3° relatório Elaboração de requisitos técnicos relativos às medidas de proteção contra incêndio. In: RELATÓRIO N° 28.922. São Paulo: Dez/90.
- 3.1.10 IPT. Elaboração de documentação técnica necessária para a complementação da regulamentação estadual de proteção contra incêndio. In: RELATÓRIO N° 28.916.São Paulo: Dez/90.
- 3.1.11 Kato, M. F. Propagação superficial de chamas em materiais. In: Tecnologia de Edificações. São Paulo: Pini, nov/1988.
- 3.1.12 Macintyre, A. J. Instalações Hidráulicas Prediais e Industriais. 2. Ed. Rio de Janeiro: Guanabara, 1988.
- 3.1.13 NATIONAL FIRE PROTECTION ASSOCIATION. Manual de Protecion Conta Incêndio. 4. Ed, Espanha, Mapfre, 1993.

3.1.14 Seito A.I. Tópicos da segurança contra incêndio. In: Tecnologia de Edificações. São Paulo: Pini, nov/1988.

3.1.15 Seito A.I. Fumaça no incêndio — movimentação no edifício e seu controle. In: Tecnologia de Edificações. São Paulo: Pini, nov/1988.

3.1.16 Silva V.P. Estruturas de aço em situação de incêndio. São Paulo. Zigurate, abr/2001.

4 Prevenção de incêndio

Um dos tópicos abordados na avaliação e planejamento da proteção de uma coletividade é a prevenção de incêndio.

O termo "prevenção de incêndio" expressa tanto a educação pública como as medidas de proteção contra incêndio em um edifício.

Figura 1 - "Programa" Bombeiros nas Escolas"

Figura 2 - Vistoria em edificação

Figura 3 – Análise de processo de segurança contra Incêndio

A implantação da prevenção de incêndio se faz por meio de atividades que visam a evitar o surgimento do sinistro, possibilitar sua extinção e reduzir seus efeitos antes da chegada do Corpo de Bombeiros.

As atividades relacionadas com a educação consistem no preparo da população, por meio da difusão de idéias que divulgam as medidas de segurança, para prevenir o surgimento de incêndios nas ocupações. Buscam, ainda, ensinar os procedimentos a serem adotados pelas pessoas diante de um incêndio, os cuidados a serem observados com a manipulação de produtos perigosos e também os perigos das práticas que geram riscos de incêndio.

As atividades que visam à proteção contra incêndio dos edifícios podem ser agrupadas em:

1) atividades relacionadas com as exigências de medidas de proteção contra incêndio nas diversas ocupações;

Figura 4 - Sistema de hidrantes

2) atividades relacionadas com a extinção, perícia e coleta de dados dos incêndios pelos órgãos públicos, que visam aprimorar técnicas de combate e melhorar a proteção contra incêndio por meio da investigação, estudo dos casos reais e estudo quantitativo dos incêndios no estado de São Paulo.

A proteção contra incêndio é definida como medidas tomadas para a detecção e controle do

crescimento do incêndio e sua conseqüente contenção ou extinção.

Figura 5 - Incêndio em engarrafadora de GLP (26Ago91)

Figura 6 - Combate a incêndio em engarrafadora de GLP (26Ago91)

Figura 7 - Levantamento do incêndio (27Ago91)

Figura 8 - Análise do incêndio por técnicos do Corpo de Bombeiros e Instituto de Pesquisas Tecnológicas- (27Ago91)

Essas medidas dividem-se em:

1) medidas ativas de proteção que abrangem a detecção, alarme e extinção do fogo (automática e/ou manual); e

Figura 9 - Extintor de incêndio.

2) medidas passivas que abrangem o controle dos materiais, meios de escape, compartimentação e proteção da estrutura do edifício.

Figura 10 - Isolamento vertical de fachada

4.1 Objetivos da Prevenção de Incêndio

Os objetivos da Prevenção são:

- a garantia da segurança à vida das pessoas que se encontrarem no interior de um edifício, quando da ocorrência de um incêndio:
- a prevenção da conflagração e propagação do incêndio, envolvendo todo o edifício;
- a proteção do conteúdo e a estrutura do edifício;
- 4) minimizar os danos materiais de um incêndio.

Esses objetivos são alcançados pelo:

- 1) controle da natureza e da quantidade de materiais combustíveis constituintes e contidos no edifício;
- 2) dimensionamento da compartimentação interna, do distanciamento entre edifícios e da resistência ao fogo dos elementos de compartimentação;
- 3) dimensionamento da proteção e de resistência ao fogo da estrutura do edifício;
- 4) dimensionamento de sistemas de detecção e alarme de incêndio e/ou de sistemas de chuveiros automáticos de extinção de incêndio e/ou equipamentos manuais para combate;
- 5) dimensionamento das rotas de escape e dos dispositivos para controle do movimento da fumaça.
- 6) controle das fontes de ignição e riscos de incêndio:
- 7) acesso para os equipamentos de combate a incêndio:
- 8) treinamento de pessoal habilitado a combater um princípio de incêndio e coordenar o abandono seguro da população de um edifício;
- gerenciamento e manutenção dos sistemas de proteção contra incêndio instalado;
- 10) controle dos danos ao meio ambiente decorrente de um incêndio.

5 EMBASAMENTO LEGAL

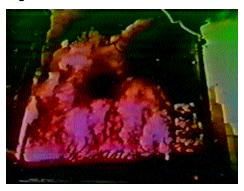
- O Corpo de Bombeiros, para atuar na área de prevenção, utiliza-se dos embasamentos jurídicos descritos abaixo.
- 5.1 Constituição Federal
- O Estado pode legislar concorrentemente com a União a respeito do Direito Urbanístico, podendo legislar sobre prevenção de incêndios (art. 24 Inciso I).
- O Corpo de Bombeiros, além das atribuições definidas em Lei, compete à execução das atividades de Defesa Civil (art. 144 § 5°).
- 5.2 Constituição Estadual
- As Atribuições do CB por meio de Lei Complementar (Lei Orgânica da PM Art. 23, §U, inciso 6);

A Lei n. º 616/74 (Organização Básica da PM), no Art. 2º, inciso V, foi recepcionada pela Constituição e determina que Compete a Polícia Militar a realização de serviços de prevenção e de extinção de incêndio.

5.3 Lei de Convênio

Atualmente, a Corporação atua na prevenção de incêndio por meio dos convênios com os municípios, decorrente de Lei Estadual n. º 684/75.

"Artigo 3º" - Os municípios obrigarão a autorizar o órgão competente do Corpo de Bombeiros, da Polícia Militar, a pronunciar-se nos processos referentes à aprovação de projetos e à concessão de alvarás para construção, reforma ou conservação de imóveis, somente serão aprovados ou expedidos se verificada pelo órgão, a fiel observância das normas técnicas de prevenção e segurança contra incêndios.


Parágrafo Único - A autorização de que trata este artigo é extensiva à vistoria para concessão de alvará de "habite-se" e de funcionamento...".

6 Cronologia dos principais incêndios em edifícios altos em São Paulo

6.1 Edifício Andraus

São Paulo - 24 de Fevereiro de 1972; Edifício com 31 pavimentos de escritórios e lojas; Incêndio atingiu todos os andares; 6 vítimas fatais e 329 feridos; Origem no 4º pavimento, em grande quantidade de material depositado.

Figura 11 - Incêndio no edifício Andraus

6.2 Edifício Joelma
São Paulo - 01 de Fevereiro de 1974;
Edifício com 25 pavimentos de escritórios e garagens;
Incêndio atingiu todos os pavimentos;
189 vítimas fatais e 320 feridos;
Causa Possível: curto-circuito.

Figura 12 - Incêndio no edifício Joelma

Figura 13 - Pessoas presas na cobertura

6.3 Edifício Grande Avenida
São Paulo - 14 de Fevereiro de 1981;
Pela segunda vez;
Incêndio atingiu 19 pavimentos;
17 vítimas fatais e 53 feridos;
Origem no subsolo;

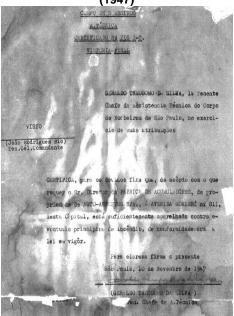
Figura 14 - Incêndio no Edifício Grande Avenida

Figura 15 - Pessoas presas no edifício;

6.4 Edifício CESP
São Paulo - 21 de Maio de 1987;
Edifício com 02 blocos com 21 pavimentos e 27 pavimentos respectivamente;
Propagação de incêndio entre blocos e, em decorrência, colapso da estrutura com desabamento parcial.

Figura 16 - Propagação entre blocos

7 Resumo histórico da evolução da prevenção no Corpo de Bombeiros


Desde 1909 o Corpo de Bombeiros atua na área de prevenção de incêndio por meio do "Regulamento para os Locais de Divertimentos Públicos".

Em 1936 o Corpo de Bombeiros passa ao Município de São Paulo, e atua na fiscalização junto com o Departamento de Obras.

Em 1942 surge a primeira Seção Técnica;

Em 1947 pode-se observar a emissão de Atestados de Vistoria;

Figura 17 - Primeiro Auto de Vistoria do CB (1947)

Em 1961, surge a primeira Especificação Para Instalações de Proteção Conta Incêndio, com referência a normas da ABNT.

De 1961 a 1980, o Corpo de Bombeiros atua por meio das Especificações baixadas pelo Comandante Geral da Polícia Militar do Estado de São Paulo, que exigia somente extintores, hidrantes e sinalização de equipamentos.

Em 1983, surge a primeira Especificação do Corpo de Bombeiros anexa a um Decreto. Esta Especificação passou a exigir:

- 1) extintores;
- 2) sistema de hidrantes;
- 3) sistema de alarme de incêndio e detecção de fumaça e calor;
- 4) sistema de chuveiros automáticos;
- 5) sistema de iluminação de emergência:
- 6) compartimentação vertical e horizontal;
- 7) escadas de segurança;
- 8) Isolamento de risco;

9) sistemas fixos de Espuma, CO₂ e Halon; e outras proteções.

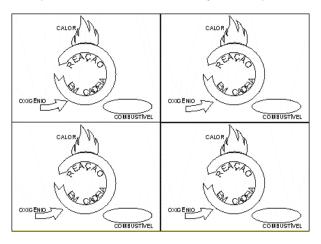
Em 1993:

- 1) passou a vigorar o Decreto Estadual 38069;
- 2) iniciou-se a publicação em Diário Oficial de Despachos Normativos;
- 3) foi publicada no Diário Oficial do Estado, a regulamentação do Sistema de Atividades Técnicas, no que diz respeito ao funcionamento de forma sistemática das Seções de Atividades Técnicas das Unidades Operacionais do Corpo de Bombeiros;
- 4) foi criado um Projeto de Lei Complementar para instituição do Código Estadual de Proteção Contra Incêndio e Emergência.

8 Conceitos Gerais

- 8.1 A propagação de fogo, fumaça e gases quentes no interior das edificações.
- 8.1.1 Fenômeno Característico

O fogo pode ser definido como um fenômeno físicoquímico onde se tem lugar uma reação de oxidação com emissão de calor e luz.


Devem coexistir quatro componentes para que ocorra o fenômeno do fogo:

- 1) combustível;
- 2) comburente (oxigênio);
- 3) calor;
- 4) reação em cadeia.

Figura 18 - Tetraedro do fogo

Figura 19 - Mecanismo de extinção do fogo

Os meios de extinção se utilizam deste princípio, pois agem por meio da inibição de um dos componentes para apagar um incêndio.

O combustível pode ser definido como qualquer substância capaz de produzir calor por meio da reação química.

O comburente – substância que alimenta a reação química, sendo mais comum o oxigênio.

O calor pode ser definido como uma forma de energia que se transfere de um sistema para outro em virtude de uma diferença de temperatura. Ele se distingue das outras formas de energia porque, como o trabalho, só se manifesta num processo de transformação.

Podemos, ainda, definir incêndio como sendo o fogo indesejável, qualquer que seja sua dimensão.

Como foi dito, o comburente é o oxigênio do ar e sua composição percentual no ar seco, é de 20,99%; os demais componentes são o nitrogênio com 78,03% e outros gases (CO₂, Ar, H₂, He, Ne, Kr) com 0,98%.

O calor, por sua vez, pode ter como fonte à energia elétrica, o cigarro aceso, os queimadores a gás, a fricção ou mesmo a concentração da luz solar através de uma lente.

O fogo se manifesta diferentemente em função da composição química do material; mas, por outro lado, um mesmo material pode queimar de modo diferente em função da sua superfície específica, das condições de exposição ao calor, da oxigenação e da umidade contida.

A maioria dos sólidos combustíveis possui um mecanismo seqüencial para sua ignição. O sólido precisa ser aquecido, quando desenvolve vapores combustíveis que se misturam com o oxigênio, formando a mistura inflamável (explosiva), a qual, na presença de uma pequena chama (mesmo fagulha ou centelha) ou em contato com uma

superfície aquecida acima de 500°C, igniza-se; aparece então a chama na superfície do sólido, que fornece mais calor, aquecendo mais materiais e assim sucessivamente.

Alguns sólidos pirofóricos (sódio, fósforo, magnésio etc.) não se comportam conforme o mecanismo acima descrito.

Os líquidos inflamáveis e combustíveis possuem mecanismos semelhantes, ou seja, o líquido, ao ser aquecido, vaporiza-se e o vapor se mistura com o oxigênio, formando a "mistura inflamável" (explosiva) que na presença de uma pequena chama (mesmo fagulha ou centelha) ou em contato com superfícies aquecidas acima de 500°C, ignizam-se e aparece então a chama na superfície do líquido, que aumenta a vaporização e a chama. A quantidade de chama fica limitada à capacidade de vaporização do liquido.

Os líquidos são classificados pelo seu ponto de fulgor, ou seja, pela menor temperatura na qual liberam uma quantidade de vapor que ao contato com uma chama produz um lampejo (uma queima instantânea).

Existe, entretanto, uma outra classe de líquidos, denominados instáveis ou reativos, cuja característica é de se polimerizar, decompor ou condensar violentamente ou ainda, de se tornar auto-reativo sob condições de choque, pressão ou temperatura, podendo desenvolver grande quantidade de calor.

A mistura inflamável vapor-ar (gás-ar) possui uma faixa ideal de concentração para se tornar inflamável ou explosiva, e os limites dessa faixa são denominados limite inferior de inflamabilidade e limite superior de inflamabilidade, expressos em porcentagem ou volume.

Estando a mistura fora desses limites não ocorrerá a ignição.

Os materiais sólidos não queimam por mecanismos tão precisos e característicos como os dos líquidos e gases.

Nos materiais sólidos, a área especifica é um fator importante para determinar sua razão de queima, ou seja, a quantidade do material queimado na unidade de tempo, que está associado à quantidade de calor gerado e, portanto, à elevação da temperatura do ambiente. Um material sólido com igual massa e com área específica diferente, por exemplo, de 1 m² e 10 m², queima em tempos inversamente proporcionais; porém, libera a mesma quantidade de calor. No entanto, a temperatura atingida no segundo caso será bem maior.

Por outro lado, não se pode afirmar que isto é sempre verdade, no caso da madeira, observa-se que, quando apresentada em forma de serragem,

ou seja, com áreas especificas grandes, não se queima com grande rapidez.

Comparativamente, a madeira em forma de pó pode formar uma mistura explosiva com o ar, comportando-se desta maneira como um gás que possui velocidade de queima muito grande.

No mecanismo de queima dos materiais sólidos temos a oxigenação como um outro fator de grande importância.

Quando a concentração em volume de oxigênio no ambiente cai para valores abaixo de 14%, a maioria dos materiais combustíveis existentes no local não mantém a chama na sua superfície.

A duração do fogo é limitada pela quantidade de ar e do material combustível no local. O volume de ar existente numa sala de 30 m² irá queimar 7,5 kg de madeira, portanto o ar necessário para a alimentação do fogo dependerá das aberturas existentes na sala.

Vários pesquisadores (Kawagoe, Sekine, Lie) estudaram o fenômeno, e a equação apresentada por Lie é:

$$V' = a H' B V_m$$

Onde:

V' = vazão do ar introduzido;

a = coeficiente de descarga;

H'= altura da seção do vão de ventilação abaixo do plano neutro;

B = largura do vão;

V_m = velocidade média do ar;

Considerando L o volume de ar necessário para a queima completa de kg de madeira, a taxa máxima de combustão será dada por V'/L, isto é:

$$R = \frac{V'}{L} \frac{aH'BV'_m}{L}$$

Da taxa de combustão ou queima, segundo os pesquisadores, pode-se definir a seguinte expressão representando a quantidade de peso de madeira equivalente, consumida na unidade de tempo:

$$R = C Av \sqrt{H}$$

onde:

R = taxa de queima (kg/min);

 $C = Constante = 5.5 Kg/mim m^{5/2}$;

 $A_v = HB =$ área da seção de ventilação (m²);

H = altura da seção (m);

$$A_{v}$$
 M_{o} H = grau de ventilação (Kawagoe)

Quando houver mais de uma abertura de ventilação, deve-se utilizar um fator global igual a:

$$\Sigma A_i \quad \sqrt{\quad H_i}$$

A razão de queima em função da abertura fica, portanto:

$$R = 5.5 \text{ A}_{v} \sqrt{\frac{\text{H}}{\text{para a queima (kg/min);}}}$$

$$R = 330 \text{ A}_{v} \sqrt{\frac{\text{H}}{\text{para a queima: (kg/h);}}}$$

Esta equação diz que o formato da seção tem grande influência. Por exemplo, para uma abertura de 1,6 m² (2,0 x 0,8 m) teremos:

Sendo:

2,0 m a largura R1 = 7,9 kg/min;

2,0 m a altura R2 = 12,4 kg/min;

Por outro lado, se numa área de piso de 10 m² existir 500 kg de material combustível expresso em equivalente em madeira, ou seja, se a carga de incêndio específica for de 50 kg/m² e a razão de queima devido à abertura para ventilação tiver o valor de R1 e R2 acima calculado, então a duração da queima será respectivamente de 40 min e 63 min.

O cálculo acima tem a finalidade de apresentar o princípio para determinação da duração do incêndio real; não busca determinar o Tempo Requerido de Resistência ao Fogo (TRRF) das estruturas.

Este cálculo é válido somente para uma abertura enquanto as outras permanecem fechadas (portas ou janelas); caso contrário, deve-se redimensionar a duração do incêndio para uma nova ventilação existente.

8.1.2 Evolução de um Incêndio

A evolução do incêndio em um local pode ser representada por um ciclo com três fases características:

- 1) Fase inicial de elevação progressiva da temperatura (ignição);
- 2) Fase de aquecimento;
- 3) Fase de resfriamento e extinção;

Figura 20 - Curva temperatura tempo de um incêndio

A primeira fase inicia-se como ponto de inflamação inicial e caracteriza-se por grandes variações de temperatura de ponto a ponto, ocasionadas pela inflamação sucessiva dos objetos existentes no recinto, de acordo com a alimentação de ar.

Normalmente os materiais combustíveis (materiais passíveis de se ignizarem) e uma variedade de fontes de calor coexistem no interior de uma edificação.

A manipulação acidental destes elementos é, potencialmente, capaz de criar uma situação de perigo.

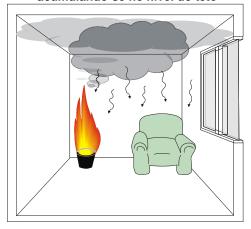
Os focos de incêndio, deste modo, originam-se em locais onde fonte de calor e materiais combustíveis são encontrados juntos, de tal forma que ocorrendo a decomposição do material pelo calor são desprendidos gases que podem se inflamar.

Considerando-se que diferentes materiais combustíveis necessitam receber diferentes níveis de energia térmica para que ocorra a ignição é necessário que as perdas de calor sejam menores que a soma de calor proveniente da fonte externa e do calor gerado no processo de combustão.

Neste sentido, se a fonte de calor for pequena, ou a massa do material a ser ignizado for grande, ou, ainda, a sua temperatura de ignição for muito alta, somente irão ocorrer danos locais sem a evolução do incêndio.

Se a ignição definitiva for alcançada, o material continuará a queimar desenvolvendo calor e produtos de decomposição. A temperatura subirá progressivamente, acarretando a acumulação de fumaça e outros gases e vapores junto ao teto.

Há, neste caso, a possibilidade de o material envolvido queimar totalmente sem proporcionar o envolvimento do resto dos materiais contidos no ambiente ou dos materiais constituintes dos elementos da edificação. De outro modo, se houver caminhos para a propagação do fogo, através de convecção ou radiação, em direção aos materiais presentes nas proximidades, ocorrerá simultaneamente à elevação da temperatura do


recinto e o desenvolvimento de fumaça e gases inflamáveis.

Com a evolução do incêndio e a oxigenação do ambiente, através de portas e janelas, o incêndio ganhará ímpeto; os materiais passarão a ser aquecidos por convecção e radiação acarretando um momento denominado de "inflamação generalizada – Flash Over", que se caracteriza pelo envolvimento total do ambiente pelo fogo e pela emissão de gases inflamáveis através de portas e janelas, que se queimam no exterior do edifício.

Neste momento torna-se impossível a sobrevivência no interior do ambiente.

O tempo gasto para o incêndio alcançar o ponto de Inflamação generalizada é relativamente curto e depende, essencialmente, dos revestimentos e acabamentos utilizados no ambiente de origem, embora as circunstâncias em que o fogo comece a se desenvolver exerçam grande influência.

Figura 21 - Fase anterior ao *Flashover* - grande desenvolvimento de fumaça e gases, acumulando-se no nível do teto

A possibilidade de um foco de incêndio extinguir ou evoluir para um grande incêndio depende, basicamente dos seguintes fatores:

- 1) quantidade, volume e espaçamento dos materiais combustíveis no local;
- 2) tamanho e situação das fontes de combustão;
- 3) área e locação das janelas;
- 4) velocidade e direção do vento;
- 5) a forma e dimensão do local.

Pela radiação emitida por forros e paredes, os materiais combustíveis que ainda não queimaram, são pré-aquecidos à temperatura próxima da sua temperatura de ignição.

As chamas são bem visíveis no local;

Se estes fatores criarem condições favoráveis ao crescimento do fogo, a inflamação generalizada irá correr e todo o compartimento será envolvido pelo fogo.

A partir dai, o incêndio irá se propagar para outros compartimentos da edificação seja por convecção de gases quentes no interior da casa ou através do exterior, na medida em que as chamas que saem pelas aberturas (portas e janelas) podem transferir fogo para o pavimento superior, quando este existir, principalmente através das janelas superiores.

A fumaça, que já na fase anterior è Inflamação generalizada, pode ter-se espalhado no interior da edificação, se intensifica e se movimenta perigosamente no sentido ascendente, estabelecendo, em instantes, condições críticas para a sobrevivência na edificação.

Caso a proximidade entre as fachadas da edificação incendiada e as adjacentes possibilite a incidência de intensidades críticas de radiação, o incêndio poderá se propagar (por radiação) para outras habitações, configurando uma conflagração.

A proximidade ainda maior entre habitações pode estabelecer uma situação ainda mais crítica para a ocorrência da conflagração na medida em que o incêndio se alastrar muito rapidamente por contato direto das chamas entre as fachadas.

No caso de habitações agrupadas em bloco, a propagação do incêndio entre unidades poderá se dar por condução de calor via paredes e forros, por destruição destas barreiras, ou ainda, através da convecção de gases quentes que venham a penetrar por aberturas existentes.

Com o consumo do combustível existente no local ou decorrente da falta de oxigênio, o fogo pode diminuir de intensidade, entrando na fase de resfriamento e conseqüente extinção.

8.1.3 Fatores que contribuem para a evolução de um incêndio

Os fatores que contribuem para a evolução de um incêndio, já citados acima, estão relacionados com a transmissão de calor que ocorre de três formas fundamentais:

- por condução, ou seja, através de um material sólido de uma região de temperatura elevada em direção a uma outra região de baixa temperatura;
- 2) por convecção, ou seja, por meio de um fluido líquido ou gás, entre dois corpos submersos no fluido, ou entre um corpo e o fluido:

Figura 22 - Propagação por condução (contato direto das chamas

Figura 23 - Propagação por convecção, onde gases quentes fazem com que ocorra focos de incêndio em andares distintos

3) por radiação, ou seja, por meio de um gás ou do vácuo, na forma de energia radiante.

Figura 24 - Radiação de calor de um edifício para outro

Num incêndio as três formas geralmente são concomitantes, embora em determinado momento uma delas seja predominante.

8.1.4 A influência do conteúdo combustível (carga de incêndio)

O desenvolvimento e a duração de um incêndio são influenciados pela quantidade de combustível a queimar.

Com ele, a duração decorre dividindo-se a quantidade de combustível pela taxa ou velocidade de combustão.

Portanto pode-se definir um parâmetro que exprime o poder calorífico médio da massa de materiais combustíveis por unidade de área de um local, que se denomina carga de incêndio específica (ou térmico) unitário e corresponde à carga de incêndio específica (*fire load density*).

Figura 25 - Material de acabamento interno e móveis de um escritório

Na carga de incêndio estão incluídos os componentes de construção, tais como revestimentos de piso, forro, paredes, divisórias etc. (denominada carga de incêndio incorporada), mas também todo o material depositado na edificação, tais como peças de mobiliário, elementos de decoração, livros, papéis, peças de vestiário e materiais de consumo (denominada carga de incêndio temporal).

8.1.5 A influência da ventilação

Durante um incêndio o calor emana gases dos materiais combustíveis, que podem em decorrência da variação de temperatura interna e externa a edificação, ser mais ou menos densos que o ar.

Esta diferença de temperatura provoca um movimento ascensional dos gases que são paulatinamente substituídos pelo ar que adentra a edificação por meio das janelas e portas.

Disto ocorre uma constante troca entre o ambiente interno e externo, com a saída dos gases quentes e fumaça e a entrada de ar.

Em um incêndio ocorrem dois casos típicos, que estão relacionados com a ventilação e com a quantidade de combustível em chama.

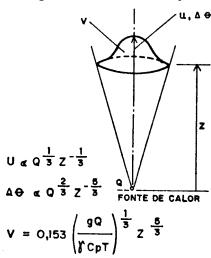
No primeiro caso, no qual a vazão de ar que adentra ao interior da edificação incendiada for superior á necessidade da combustão dos materiais, temos um fogo aberto, aproximando-se a uma queima de combustível ao ar livre, cuja característica será de uma combustão rápida.

No segundo caso, no qual a entrada de ar é controlada, ou deficiente em decorrência de pequenas aberturas externas, temos um incêndio com duração mais demorada, cuja queima é controlada pela quantidade de combustível, ou seja, pela carga incêndio. Na qual a estrutura da edificação estará sujeita a temperaturas elevadas por um tempo maior de exposição, até que ocorra a queima total do conteúdo do edifício.

Em resumo, a taxa de combustão de um incêndio pode ser determinada pela velocidade do suprimento de ar, estando implicitamente relacionada com a quantidade de combustível e sua disposição da área do ambiente em chamas e das dimensões das aberturas.

Deste conceito decorre a importância da forma e quantidade de aberturas em uma fachada.

8.1.6 Mecanismos de movimentação dos gases quentes


Quando se tem um foco de fogo num ambiente fechado, numa sala, por exemplo, o calor destila gases combustíveis do material e há ainda a formação de outros gases devido à combustão dos gases destilados.

Estes gases podem ser mais ou menos densos de acordo com a sua temperatura, a qual é sempre maior do que e ambiente e, portanto, possuem uma força de flutuação com movimento ascensional bem maior que o movimento horizontal.

Os gases quentes vão-se acumulando junto ao forro e se espalhando por toda a camada superior do ambiente, penetrando nas aberturas existentes no local.

Os gases quentes, assim como a fumaça, gerados por uma fonte de calor (material em combustão), fluem no sentido ascendente com formato de cone Invertido. Esta figura é denominada "Plume".

Figura 26 - Plume de fumaça

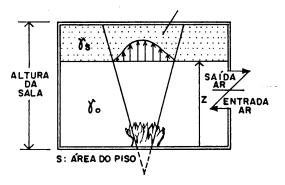
Onde:

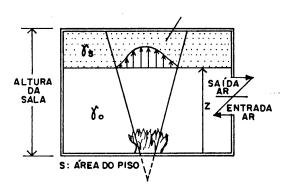
Q = taxa de desenvolvimento de calor de fonte;

Z = distância entre e fonte e a base do "plume";

U = velocidade do ar na região do "plume";

V = volume do "plume";


ĆI = diferença de temperatura entre o "plume" e o ambiente;


T = temperatura do gás;

v = massa especifica;

Cp = calor específico.

Figura 27 - Processo de formação de gases e fluxo básico do ar no

De acordo com a quantidade de materiais combustíveis, da sua disposição, da área e volume do local e das dimensões das aberturas, a taxa de queima pode ser determinada pela velocidade de suprimento do ar.

Entretanto, quando a vazão do ar for superior às necessidades da combustão, então a taxa de queima não será mais controlada por este mecanismo, aproximando-se, neste caso, à combustão do material ao ar livre.

No Incêndio, devido ao alto nível de energia a que ficam expostos, os materiais destilam gases combustíveis que não queimam no ambiente, por falta de oxigênio. Estes gases superaquecidos, com temperaturas muito superiores às de sua autoignição, saindo pelas aberturas, encontram o oxigênio do ar externo ao ambiente e se ignizam formando grandes labaredas.

As chamas assim formadas são as responsáveis pela rápida propagação vertical nos atuais edifícios que não possuem sistemas para evitá-las.

8.1.7 "A fumaça" – Um problema sério a ser considerado

8.1.7.1 Efeitos da fumaça

Associadas ao incêndio e acompanhando o fenômeno da combustão, aparecem, em geral, quatro causas determinantes de uma situação perigosa:

- 1) calor;
- 2) chamas;
- 3) fumaça;
- 4) insuficiência de oxigênio.

Do ponto de vista de segurança das pessoas, entre os quatro fatores considerados, a fumaça indubitavelmente causa danos mais greves, e, portanto, deve ser o fator mais importante a ser considerado.

A fumaça pode ser definida como uma mistura complexa de sólidos em suspensão, vapores e gases, desenvolvida quando um material sofre o processo de pirólise (decomposição por efeito do calor) ou combustão.

Os componentes desta mistura, associados ou não, influem diferentemente sobre as pessoas, ocasionando os seguintes efeitos:

- 1) diminuição da visibilidade devido à atenuação luminosa do local;
- 2) lacrimejamento e irritações dos olhos;
- 3) modificação de atividade orgânica pela aceleração da respiração e cardíacas:
- vômitos e tosse:
- 4) medo;
- 5) desorientação;
- 6) Intoxicação e asfixia.

A redução da visibilidade do local impede e locomoção das pessoas fazendo com que fiquem expostas por tempo maior aos gases e vapores tóxicos. Estes, por sua vez, causam a morte se estiverem presentes em quantidade suficiente e se as pessoas ficarem expostas durante o tempo que acarreta esta ação.

Daí decorre a importância em se entender o comportamento da fumaça em uma edificação.

A propagação da fumaça está diretamente relacionada com a taxa de elevação da temperatura; portanto, a fumaça desprendida por qualquer material, desde que exposta à mesma taxa de elevação da temperatura, gerará igual propagação.

Se conseguirmos determinar os valores de densidade ótica da fumaça e da toxicidade na saída de um ambiente sinistrado, poderemos estudar o movimento do fluxo de ar quente e, então, será possível determinar o tempo e a área do edifício que se tornará perigosa, devido à propagação da fumaça.

Assim, se conseguirmos determinar o valor de Q e se utilizarmos as características do "Plume" (V, g, Q, y, Cp, T), prognosticando a formação da camada de fumaça dentro do ambiente, será possível calcular o tempo em que este ambiente se tornará perigoso. De outro modo, se o volume V de fumaça se propagar em pouco tempo por toda a extensão do forro e se fizermos com que Q seja uma função de tempo, o cálculo do valor de Z pode ser obtido em função do tempo e esta equação diferencial pode ser resolvida. Isto permitirá determinar o tempo necessário para evacuar o ambiente, antes que a fumaça atinja a altura de um homem.

A movimentação da fumaça através de corredores e escadas dependerá, sobretudo das aberturas existentes e da velocidade do ar nestes locais, porém, se o mecanismo de locomoção for considerado em relação às características do "Plume", pode-se, então, estabelecer uma correlação com o fluxo de água. Em casos em que

exista um exaustor de seção quadrada menor que e largura do corredor; e se a fumaça vier fluindo em sua direção, parte desta fumaça será exaurida e grande parte passará direta e continuará fluindo para o outro lado. No entanto, se o fluxo de fumaça exaurir-se através de uma abertura que possua largura igual à do corredor, a fumaça será retirada totalmente.

Foi verificado que quanto mais a fumaça se alastrar, menor será a espessura de sua camada, e que a velocidade de propagação de fumaça na direção horizontal, no caso dos corredores, está em torno de 1 m/s, e na direção vertical, no caso das escadas, está entre 2 m/s e 3 m/s.

8.1.8 Processo de Controle de Fumaça

O processo de Controle de Fumaça necessário em cada edifício para garantir a segurança de seus ocupantes contra o fogo e fumaça é baseado nos princípios de engenharia. O processo deve ter a flexibilidade e a liberdade de seleção de método e da estrutura do sistema de segurança para promover os requisitos num nível de segurança que se deseja.

Em outras palavras, o objetivo do projeto da segurança de prevenção ao fogo (fumaça) é obter um sistema que satisfaça as conveniências das atividades diárias, devendo ser econômico, garantindo a segurança necessária sem estar limitado por método ou estruturas especiais prefixados.

Existem vários meios para controlar o movimento da fumaça, e todos eles têm por objetivo encontrar um meio ou um sistema levando-se em conta as características de cada edifício.

Figura 28 - Extração de fumaça de átrios

Como condições que tem grande efeito sobre o movimento da fumaça no edifício, podem-se citar:

- 1) momento (época do ano) da ocorrência do incêndio;
- 2) condições meteorológicas (direção e velocidade e coeficiente de pressão do vento e temperatura do ar);
- 3) localização do início do fogo;

- 4) resistência ao fluxo do ar das portas, janelas, dutos e chaminés;
- 5) distribuição da temperatura no edifício (ambiente onde está ocorrendo o fogo, compartimentos em geral, caixa da escada, dutos e chaminés).

Devem-se estabelecer os padrões para cada uma destas condições.

Entende-se como momento de ocorrência do incêndio a época do ano (verão/inverno) em que isto possa ocorrer, pois, para o cálculo, deve-se levar em conta a diferença de temperatura existente entre o ambiente interno e o externo ao edifício. Esta diferença será grande, caso sejam utilizados aquecedores ou ar condicionado no edifício.

As condições meteorológicas devem ser determinadas pelos dados estatísticos meteorológicos da região na qual está situado o edifício, para as estações quentes e frias.

Pode-se determinar a temperatura do ar, a velocidade do vento, coeficiente de pressão do vento e a direção do vento.

O andar do prédio onde se iniciou o incêndio deve ser analisado, considerando-se o efeito da ventilação natural (movimento ascendente ou descendente da fumaça) através das aberturas ou dutos durante o período de utilização, ou seja, no inverno o prédio é aquecido e no verão, resfriado. Considerando-se esses dados, os estudos devem ser levados a efeito nos andares inferiores no inverno (térreo, sobreloja e segundo andar) ou nos andares superiores e inferiores no verão (os dois últimos andares do prédio e térreo).

Em muitos casos, existem andares que possuem características perigosas, pois propiciam a propagação de fumaça caso ocorra incêndio neste local. Em adição, para tais casos, é necessário um trabalho mais aprofundado para estudar as várias situações de mudança das condições do andar, por exemplo, num edifício com detalhes especiais de construção.

Com relação ao compartimento de origem do fogo, devem-se levar em consideração os seguintes requisitos para o andar em questão:

- 1) compartimento densamente ocupado, com ocupações totalmente distintas;
- 2) o compartimento apresenta grande probabilidade de iniciar o incêndio;
- o compartimento possui características de difícil controle da fumaça.

Quando existirem vários compartimentos que satisfaçam estas condições, devem-se fazer estudos em cada um deles, principalmente se as medidas de controle de fumaça determinadas levarem a resultados bastante diferentes.

O valor da resistência ao fluxo do ar das aberturas à temperatura ambiente pode ser facilmente obtido a partir de dados de projeto de ventilação, porém é muito difícil estimar as condições das aberturas das janelas e portas numa situação de incêndio.

Para se determinar as temperaturas dos vários ambientes do edifício deve-se considerar que os mesmos não sofreram modificações com o tempo.

A temperatura média no local do fogo é considerada 900°C com o Incêndio totalmente desenvolvido no compartimento.

Medidas de Segurança Conta Incêndio

9 Proteção Passiva

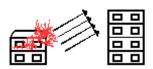
9.1.1 Isolamento de Risco.

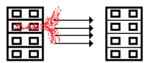
A Propagação do incêndio entre edifícios isolados pode se dar através dos seguintes mecanismos:

- 1) Radiação térmica, emitida:
 - a) através das aberturas existentes na fachada do edifício incendiado:
 - b) através da cobertura do edifício incendiado:
 - c) pelas chamas que saem pelas aberturas na fachada ou pela cobertura;
 - d) pelas chamas desenvolvidas pela própria fachada, quando esta for composta por materiais combustíveis;
- 2) Convecção, que ocorre quando os gases quentes emitidos pelas aberturas existentes na fachada ou pela cobertura do edifício incendiado atinjam a fachada do edifício adjacente;

Figura 29 - Propagação por radiação, convecção e condução.

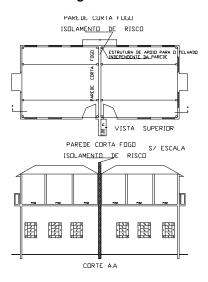
 Condução, que ocorre quando as chamas da edificação ou parte da edificação contígua a uma outra, atingem a esta transmitindo calor e incendiando a mesma;

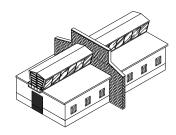

Figura 30 - Propagação por condução


Desta forma há duas maneiras de isolar uma edificação em relação à outra. São:

1) por meio de distanciamento seguro (afastamento) entre as fachadas das edificações;

Figura 31 - Isolamento por distância de afastamento


PROPAGAÇÃO ENTRE COBERTURA E FACHADA



PROPAGAÇÃO ENTRE FACHADAS

 por meio de barreiras estanques entre edifícios contíguos;

Figura 32 - Isolamento obtido por parede cortafogo

Com a previsão das paredes corta-fogo, uma edificação é considerada totalmente estanque em relação à edificação contígua.

O distanciamento seguro entre edifícios pode ser obtido por meio de uma distância mínima horizontal entre fachadas de edifícios adjacentes, capaz de evitar a propagação de incêndio entre os mesmos, decorrente do calor transferido por radiação térmica através da fachada e/ou por convecção através da cobertura.

Em ambos os casos o incêndio irá se propagar, ignizando através das aberturas, os materiais localizados no interior dos edifícios adjacentes e/ou ignizando materiais combustíveis localizados em suas próprias fachadas.

9.1.2 Compartimentação vertical e horizontal

A partir da ocorrência de inflamação generalizada no ambiente de origem do incêndio, este poderá propagar-se para outros ambientes através dos seguintes mecanismos principais:

1) convecção de gases quentes dentro do próprio edifício;

- convecção dos gases quentes que saem pelas janelas (incluindo as chamas) capazes de transferir o fogo para pavimentos superiores;
- condução de calor através das barreiras entre compartimentos;
- 4) destruição destas barreiras.

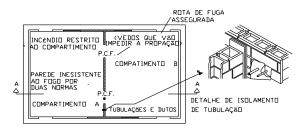
Frente à necessidade de limitação da propagação do incêndio, a principal medida a ser adotada consiste na compartimentação, que visa dividir o edifício em células capacitadas a suportar a queima dos materiais combustíveis nelas contidos, impedindo o alastramento do incêndio.

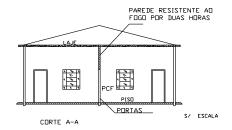
Os principais propósitos da compartimentação são:

- 1) conter o fogo em seu ambiente de origem;
- manter as rotas de fuga seguras contra os efeitos do incêndio;
- facilitar as operações de resgate e combate ao incêndio.

A capacidade dos elementos construtivos de suportar a ação do incêndio denomina-se "resistência ao fogo" e se refere ao tempo durante o qual conservam suas características funcionais (vedação e/ou estrutural).

O método utilizado para determinar a resistência ao fogo consiste em expor um protótipo (reproduzindo tanto quanto possível as condições de uso do elemento construtivo no edifício), a uma elevação padronizada de temperatura em função do tempo.


Ao longo do tempo são feitas medidas e observações para determinar o período no qual o protótipo satisfaz a determinados critérios relacionados com a função do elemento construtivo no edifício.


O protótipo do elemento de compartimentação deve obstruir a passagem do fogo mantendo, obviamente, sua integridade (recebe por isto a denominação de corta-fogo).

A elevação padronizada de temperatura utilizada no método para determinação da resistência ao fogo constitui-se em uma simplificação das condições encontradas nos incêndios e visa reproduzir somente a fase de inflamação generalizada.

Figura 33 - Detalhes de parede de compartimentação

PAREDE DE COMPARTIMENTAÇÃO

Deve-se ressaltar que, de acordo com a situação particular do ambiente incendiado, irão ocorrer variações importantes nos fatores que determinam o grau de severidade de exposição, que são:

- duração da fase de inflamação generalizada;
- 2) temperatura média dos gases durante esta fase;
- 3) fluxo de calor médio através dos elementos construtivos.

Os valores de resistência ao fogo a serem requeridos para a compartimentação na Especificação foram obtidos tomando-se por base:

- 1) a severidade (relação temperatura x tempo) típica do incêndio;
- 2) a severidade obtida nos ensaios de resistência ao fogo.

A severidade típica do incêndio é estimada de acordo com a variável ocupação (natureza das atividades desenvolvidas no edifício).

A compartimentação horizontal se destina a impedir a propagação do incêndio de forma que grandes áreas sejam afetadas, dificultando sobremaneira o controle do incêndio, aumentando o risco de ocorrência de propagação vertical e aumentando o risco à vida humana.

A compartimentação horizontal pode ser obtida através dos seguintes dispositivos:

- 1) paredes e portas corta-fogo;
- 2) registros corta-fogo nos dutos que traspassam as paredes corta-fogo;
- selagem corta-fogo da passagem de cabos elétricos e tubulações das paredes corta-fogo;
- afastamento horizontal entre janelas de setores compartimentados.

A compartimentação vertical se destina a impedir o alastramento do incêndio entre andares e assume caráter fundamental para o caso de edifícios altos em geral.

A compartimentação vertical deve ser tal que cada pavimento componha um compartimento isolado, para isto são necessários:

- 1) lajes corta-fogo;
- 2) enclausuramento das escadas através de paredes e portas corta-fogo;
- 3) registros corta-fogo em dutos que intercomunicam os pavimentos;
- selagem corta-fogo de passagens de cabos elétricos e tubulações, através das lajes;
- 5) utilização de abas verticais (parapeitos) ou abas horizontais projetando-se além da fachada, resistentes ao fogo e separando as janelas de pavimentos consecutivos (neste caso é suficiente que estes elementos mantenham suas características funcionais, obstruindo desta forma a livre emissão de chamas para o exterior).

Figura 34 - Distância de afastamento entre verga e peitoril

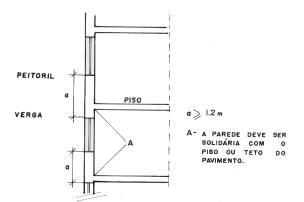


Figura 35 - Isolamento por aba horizontal ou balcão

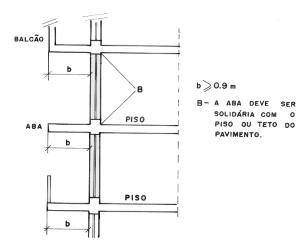


Figura 36 - Isolamento vertical de aberturas em laje

9.1.3 Resistência ao fogo das estruturas

Uma vez que o incêndio atingiu a fase de inflamação generalizada, os elementos construtivos no entorno de fogo estarão sujeitos à exposição de intensos fluxos de energia térmica.

A capacidade dos elementos estruturais de suportar por determinado período tal ação, que se denomina de resistência ao fogo, permite preservar a estabilidade estrutural do edifício.

Figura 37 - Incêndio generalizado no edifício da CESP

Durante o incêndio a estrutura do edifício como um todo estará sujeita a esforços decorrentes de deformações térmicas, e os seus materiais constituintes estarão sendo afetados (perdendo resistência) por atingir temperaturas elevadas.

O efeito global das mudanças promovidas pelas altas temperaturas alcançadas nos incêndios sobre a estrutura do edifício, traduz-se na diminuição progressiva da sua capacidade portante.

Durante este processo pode ocorrer que, em determinado instante, o esforço atuante em uma seção se iguale ao esforço resistente, podendo ocorrer o colapso do elemento estrutural.

Os objetivos principais de garantir a resistência ao fogo dos elementos estruturais são:

- 1) Possibilitar a saída dos ocupantes da edificação em condições de segurança;
- 2) Garantir condições razoáveis para o emprego de socorro público, onde se permita o acesso operacional de viaturas, equipamentos e seus recursos humanos, com tempo hábil para exercer as atividades de salvamento (pessoas retidas) e combate a incêndio (extinção);
- 3) Evitar ou minimizar danos ao próprio prédio, a edificações adjacentes, à infraestrutura pública e ao meio ambiente.

Figura 38 - Momento em que parte da estrutura do edifício da CESP entra em colapso

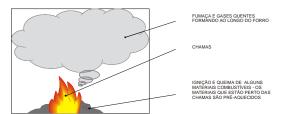
Em suma, as estruturas dos edifícios, principalmente as de grande porte, independentemente dos materiais que as constituam, devem ser dimensionadas, de forma a possuírem resistência ao fogo compatível com a

magnitude do incêndio que possam vir a ser submetidas.

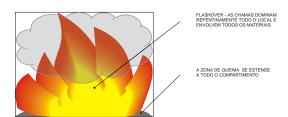
9.1.4 Revestimento dos materiais

Embora os materiais combustíveis contidos no edifício e constituintes do sistema construtivo possam ser responsáveis pelo início do incêndio, muito freqüentemente são os materiais contidos no edifício que se ignizam em primeiro lugar.

À medida que as chamas se espalham sobre a superfície do primeiro objeto ignizado e, talvez, para outros objetos contíguos, o processo de combustão torna-se mais fortemente influenciado por fatores característicos do ambiente.


Se a disponibilidade de ar for assegurada, a temperatura do compartimento subirá rapidamente e uma camada de gases quentes se formará abaixo do teto, sendo que intensos fluxos de energia térmica radiante se originarão, principalmente, a partir do teto aquecido. Os materiais combustíveis existentes no compartimento, aquecidos por convecção e radiação, emitirão gases inflamáveis. Isto levará a uma inflamação generalizada e todo o ambiente tornar-se-á envolvido pelo fogo, sendo que e os gases que não queimam serão emitidos pelas aberturas do compartimento.

A possibilidade de um foco de incêndio extinguir-se ou evoluir em um grande incêndio (atingir a fase de inflamação generalizada) depende de três fatores principais:


- 1) Razão de desenvolvimento de calor pelo primeiro objeto ignizado;
- 2) Natureza, distribuição e quantidade de materiais combustíveis no compartimento incendiado;
- 3) Natureza das superfícies dos elementos construtivos sob o ponto de vista de sustentar a combustão a propagar as chamas.

Os dois primeiros fatores dependem largamente dos materiais contidos no compartimento. O primeiro está absolutamente fora do controle do projetista. Sobre o segundo é possível conseguir-se no máximo, um controle parcial. O terceiro fator está, em grande medida, sob o controle do projetista, que pode adicionar minutos preciosos ao tempo da ocorrência da inflamação generalizada, pela escolha criteriosa dos materiais de revestimento.

Figura 39- Evolução da propagação nos materiais

Quando os materiais de revestimento são expostos a uma situação de início de incêndio, a contribuição que possa vir a trazer para o seu desenvolvimento, ao sustentar a combustão, e possibilitar a propagação superficial das chamas, denomina-se "reação ao fogo". As características de reação ao fogo dos materiais, utilizadas como revestimento dos elementos construtivos, podem ser avaliadas em laboratórios, obtendo-se assim subsídios para a seleção dos materiais na fase de projeto da edificação.

Os métodos de ensaio utilizados em laboratório para estas avaliações estipulam condições padronizadas a que os materiais devem ser expostos, que visam a reproduzir certas situações críticas, características dos incêndios antes de ocorrência de inflamação generalizada. O desempenho que a superfície de um elemento construtivo deve apresentar, para garantir um nível mais elevado de segurança contra incêndio, deve ser retirado de uma correlação entre os índices ou categorias obtidos nos ensaios e a função do elemento construtivo (conseqüentemente, sua provável influência no incêndio).

A influência de determinado elemento construtivo na evolução de um incêndio se manifesta de duas maneiras distintas. A primeira delas se refere à posição relativa do elemento no ambiente, por exemplo, a propagação de chamas na superfície inferior do forro é fator comprovadamente mais crítico para o desenvolvimento do incêndio do que a propagação de chamas no revestimento do piso, pois a transferência de calor, a partir de um foco de incêndio, é, em geral muito mais intensa no forro; neste sentido o material de revestimento do forro deve apresentar um melhor desempenho nos ensaios de laboratório.

O outro tipo de influência se deve ao local onde o material está instalado: por exemplo, a propagação de chamas no forro posicionado nas proximidades das janelas, em relação ao forro afastado das janelas, a fator acentuadamente mais crítico para a transferência do incêndio entre pavimentos, pois além de sua eventual contribuição para a emissão de chamas para o exterior, estará mais exposto (quando o incêndio se desenvolver em um pavimento inferior) a gases quentes e chamas emitidas através das janelas inferiores. Algo semelhante se dá em relação à propagação do incêndio entre edifícios, onde os materiais combustíveis incorporados elementos aos construtivos nas proximidades das fachadas podem facilitar a propagação do incêndio entre edifícios.

Os dois métodos de ensaio básicos para avaliar as características dos materiais constituintes do sistema construtivo, sob o ponto de vista de sustentar a combustão e propagar as chamas, são os seguintes;

- Ensaio de incombustibilidade que possibilitam verificar se os materiais são passíveis de sofrer a ignição e, portanto, estes ensaios possuem capacidade de contribuir para a evolução da prevenção de incêndio;
- 2) Ensaio da propagação superficial de chamas, por meio do qual os materiais passíveis de se ignizarem (materiais combustíveis de revestimento) podem ser classificados com relação à rapidez de propagação superficial de chamas e a quantidade de calor desenvolvido neste processo.

Uma outra característica que os materiais incorporados aos elementos construtivos apresentam, diz respeito a fumaça que podem desenvolver à medida em que são expostos a uma situação de início de incêndio. Em função da quantidade de fumaça que podem produzir e da opacidade desta fumaça, os materiais incorporados aos elementos construtivos podem provocar empecilhos importantes à fuga das pessoas e ao combate do incêndio.

Para avaliar esta característica deve-se utilizar o método de ensaio para determinação da densidade

ótica da fumaça produzida na combustão ou pirólise dos materiais.

O controle da quantidade de materiais combustíveis incorporados aos elementos construtivos apresenta dois objetivos distintos. O primeiro é dificultar a ocorrência da inflamação generalizada no local em que o incêndio se origina. O segundo, considerando que a inflamação generalizada tenha ocorrido, é limitar a severidade além do ambiente em que se originou.

Com relação ao primeiro objetivo, a utilização intensiva de revestimentos combustíveis capazes de contribuir para o desenvolvimento do incêndio ao sofrerem a ignição e ao levar as chamas para outros objetos combustíveis além do material / objeto onde o fogo se iniciou.

Com relação ao segundo objetivo, quanto maior for a quantidade de materiais combustíveis envolvidos no incêndio maior severidade este poderá assumir, aumentando assim o seu potencial de causar danos e a possibilidade de se propagar para outros ambientes do edifício.

O método para avalizar a quantidade de calor com que os materiais incorporados aos elementos construtivos podem contribuir para o desenvolvimento do incêndio é denominado "ensaio para determinação do calor potencial".

Figura 40 - Material de acabamento interno em escritório

9.2 Meios de Fuga

9.2.1Saída de emergência

Para salvaguardar a vida humana em caso de incêndio é necessário que as edificações sejam dotadas de meios adequados de fuga, que permitam aos ocupantes se deslocarem com segurança para um local livre da ação do fogo, calor e fumaça, a partir de qualquer ponto da edificação, independentemente do local de origem do incêndio.

Além disso, nem sempre o incêndio pode ser combatido pelo exterior do edifício, decorrente da

altura do pavimento onde o fogo se localiza ou pela extensão do pavimento (edifícios térreos).

Nestes casos, há a necessidade da brigada de incêndio ou do Corpo de Bombeiros de adentrar ao edifício pelos meios internos a fim de efetuar ações de salvamento ou combate.

Estas ações devem ser rápidas e seguras, e normalmente utilizam os meios de acesso da edificação, que são as próprias saídas de emergência ou escadas de segurança utilizadas para a evacuação de emergência,

Para isto ser possível as rotas de fuga devem atender, entre outras, as seguintes condições básicas:

9.2.2 Número de saídas:

O número de saídas difere para os diversos tipos de ocupação, em função da altura, dimensões em planta e características construtivas.

Normalmente o número mínimo de saídas consta de códigos e normas técnicas que tratam do assunto.

9.2.3 Distância a percorrer:

A distância máxima a percorrer consiste no caminhamento entre o ponto mais distante de um pavimento até o acesso a uma saída neste mesmo pavimento.

Da mesma forma como o item anterior, essa distância varia conforme o tipo de ocupação e as características construtivas do edifício e a existência de chuveiros automáticos como proteção.

Os valores máximos permitidos constam dos textos de códigos e normas técnicas que tratam do assunto.

9.2.4 Largura das escadas de segurança e das rotas de fuga horizontais.

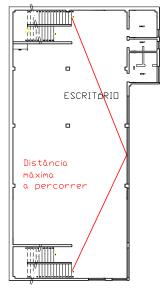
O número previsto de pessoas que deverão usar as escadas e rotas de fuga horizontais é baseado na lotação da edificação, calculada em função das áreas dos pavimentos e do tipo de ocupação.

As larguras das escadas de segurança e outras rotas devem permitir desocupar todos os pavimentos em um tempo aceitável como seguro.

Isto indica a necessidade de compatibilizar a largura das rotas horizontais e das portas com a lotação dos pavimentos e de adotar escadas com largura suficiente para acomodar em seus interiores toda a população do edifício.

As normas técnicas e os códigos de obras estipulam os valores das larguras mínimas (denominado de Unidade de Passagem) para todos os tipos de ocupação.

Figura 41 - Escada com largura apropriada para saída das pessoas



9.2.5 Localização das saídas e das escadas de segurança.

As saídas (para um local seguro) e as escadas devem ser localizadas de forma a propiciar efetivamente aos ocupantes a oportunidade de escolher a melhor rota de escape.

Para isto devem estar suficientemente afastadas uma das outras, uma vez que a previsão de duas escadas de segurança não estabelecerá necessariamente rotas distintas de fuga, pois em função de proximidade de ambas, em um único foco de incêndio poderá torná-las inacessível.

Figura 42 - Localização e caminhamento para acesso a uma escada

Escadas localizadas em lados opostos permitindo o escape seguro 9.2.5.1 Descarga das escadas de segurança e saídas finais.

A descarga das escadas de segurança deve se dar preferencialmente para saídas com acesso exclusivo para o exterior, localizado em pavimento ao nível da via pública.

Outras saídas podem ser aceitas, como as diretamente no átrio de entrada do edifício, desde que alguns cuidados sejam tomados, representados por:

- 1) sinalização dos caminhos a tomar;
- 2) saídas finais alternativas;
- compartimentação em relação ao subsolo e proteção contra queda de objetos (principalmente vidros) devido ao incêndio e etc.

Figura 43 - Descarga apropriada

9.2.6 Projeto e construção das escadas de segurança.

A largura mínima das escadas de segurança varia conforme os códigos e Normas Técnicas, sendo normalmente 2,20 m para hospitais e entre 1,10 m a 1,20 m para as demais ocupações, devendo possuir patamares retos nas mudanças de direção com largura mínima igual à largura da escada.

As escadas de segurança devem ser construídas com materiais incombustíveis, sendo também desejável que os materiais de revestimento sejam incombustíveis.

As escadas de segurança devem possuir altura e largura ergométrica dos degraus, corrimãos corretamente posicionados, piso antiderrapante, além de outras exigências para conforto e segurança.

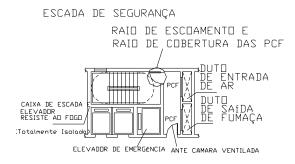
Figura 44 - Detalhe da extremidade do corrimão na parede

Figura 46 - Escada e elevador a prova de fumaça

Figura 45 - Corredor desobstruído e sinalizado

9.2.7 Escadas de segurança.

Todas as escadas de segurança devem ser enclausuradas com paredes resistentes ao fogo e portas corta-fogo. Em determinadas situações estas escadas também devem ser dotadas de antecâmaras enclausuradas de maneira a dificultar o acesso de fumaça no interior da caixa de escada. As dimensões mínimas (largura e comprimento) são determinadas nos códigos e Normas Técnicas.


A antecâmara só deve dar acesso à escada e a porta entre ambas, quando aberta, não deve avançar sobre o patamar da mudança da direção, de forma a prejudicar a livre circulação.

Para prevenir que o fogo e a fumaça desprendidos por meio das fachadas do edifício penetrem em eventuais aberturas de ventilação na escada e antecâmara, deve ser mantida uma distância horizontal mínima entre estas aberturas e as janelas do edifício.

9.2.8 Corredores.

Quando a rota de fuga horizontal incorporar corredores, o fechamento destes deve ser feito de forma a restringir a penetração de fumaça durante o estágio inicial do incêndio. Para isto suas paredes e portas devem apresentar resistência ao fogo.

Para prevenir que corredores longos se inundem de fumaça, é necessário prever aberturas de exaustão e sua subdivisão com portas à prova de fumaça.

9.2.9 Portas nas rotas de fuga:

As portas incluídas nas rotas de fuga não podem ser trancadas, entretanto devem permanecer sempre fechadas, dispondo para isto de um mecanismo de fechamento automático.

Alternativamente, estas portas podem permanecer abertas, desde que o fechamento seja acionado automaticamente no momento do incêndio.

Estas portas devem abrir no sentido do fluxo, com exceção do caso em que não estão localizadas na escada ou na antecâmara e não são utilizadas por mais de 50 pessoas. Para prevenir acidentes e obstruções, não devem ser admitidos degraus junto à soleira, e a abertura de porta não deve obstruir a passagem de pessoas nas rotas de fuga.

O único tipo de porta admitida é aquele com dobradiças de eixo vertical com único sentido de abertura.

Dependendo da situação, tais portas podem ser a prova de fumaça, corta fogo ou ambos.

A largura mínima do vão livre deve ser de 0,8 m.

Figura 47 - PCF em corredor

Figura 48 - Porta com barra antipânico

9.2.10 Sistema de Iluminação de Emergência

Esse sistema consiste em um conjunto de componentes e equipamentos que, em funcionamento, propicia a iluminação suficiente e adequada para:

- 1) permitir a saída fácil e segura do público para o
- 2) exterior, no caso de interrupção de alimentação normal;
- garantir também a execução das manobras de interesse da segurança e intervenção de socorro.

A iluminação de emergência para fins de segurança contra incêndio pode ser de dois tipos:

- 1) de balizamento;
- 2) de aclaramento.

Figura 49 - Luz de aclaramento e balizamento

A iluminação de balizamento é aquela associada à sinalização de indicação de rotas de fuga, com a função de orientar a direção e o sentido que as pessoas devem seguir em caso de emergência.

A iluminação de aclaramento se destina a iluminar as rotas de fuga de tal forma que os ocupantes não tenham dificuldade de transitar por elas.

A iluminação de emergência se destina a substituir a iluminação artificial normal que pode falhar em caso de incêndio, por isso deve ser alimentada por baterias ou por moto-geradores de acionamento automático e imediato; a partir da falha do sistema de alimentação normal de energia.

Dois métodos de iluminação de emergência são possíveis:

- iluminação permanente, quando as instalações são alimentadas em serviço normal pela fonte normal e cuja alimentação é comutada automaticamente para a fonte de alimentação própria em caso de falha da fonte normal;
- 2) iluminação não permanente, quando as instalações não são alimentadas em serviço normal e, em caso de falha da fonte normal, são alimentadas automaticamente pela fonte de alimentação própria.

Sua previsão deve ser feita nas rotas de fuga, tais como corredores, acessos, passagens antecâmara e patamares de escadas.

Seu posicionamento, distanciamento entre pontos e sua potência são determinados nas Normas Técnicas Oficiais.

9.2.11 Elevador de segurança

Para o caso de edifícios altos, adicionalmente a escada, é necessária a disposição de elevadores de emergência, alimentada por circuito próprio e concebida de forma a não sofrer interrupção de funcionamento durante o incêndio.

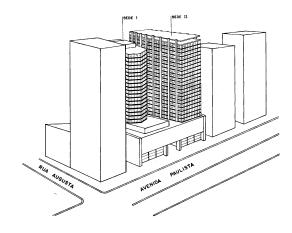
Esses elevadores devem:

- apresentar a possibilidade de serem operados pela brigada do edifício ou pelos bombeiros.
- estar localizados em área protegida dos efeitos do incêndio.

O número de elevadores de emergência necessário a suas localizações são estabelecidos levando-se em conta as áreas dos pavimentos e as distâncias a percorrer para serem alcançados a partir de qualquer ponto do pavimento. (ver figura 47) *

9.3 Acesso a viaturas do Corpo de Bombeiros

Os equipamentos de combate devem-se aproximar ao máximo do edifício afetado pelo incêndio, de tal forma que o combate ao fogo possa ser iniciado sem demora e não seja necessária a utilização de linhas de mangueiras muito longas.


Para isto, se possível, o edifício deve estar localizado ao longo de vias públicas ou privadas que possibilitam a livre circulação de veículos de combate e o seu posicionamento adequado em relação às fachadas, aos hidrantes e aos acessos ao interior do edifício. Tais vias também devem ser preparadas para suportar os esforços provenientes da circulação, estacionamento a manobras destes veículos.

O número de fachada que deve permitir a aproximação dos veículos de combate deve ser determinado tendo em conta a área de cada pavimento, a altura e o volume total do edifício.

Figura 50 - Acesso à fachada frontal da edificação

Figura 51 - Fachada do edifício da CESP, que não proporcionou acesso às viaturas do Corpo de Bombeiros

9.4 Meios de Aviso e Alerta

Sistema de alarme manual contra incêndio e detecção automática de fogo e fumaça

Quanto mais rapidamente o fogo for descoberto, correspondendo a um estágio mais incipiente do incêndio, tanto mais fácil será controlá-lo; além disso, tanto maiores serão as chances dos ocupantes do edifício escaparem sem sofrer qualquer injúria.

Uma vez que o fogo foi descoberto, a seqüência de ações normalmente adotada é a seguinte: alertar o controle central do edifício; fazer a primeira tentativa de extinção do fogo, alertar os ocupantes do edifício para iniciar o abandono do edifício, e informar o serviço de combate a incêndios (Corpo de Bombeiros). A detecção automática é utilizada com o intuito de vencer de uma única vez esta série de ações, propiciando a possibilidade de tomar-se uma atitude imediata de controle de fogo e da evacuação do edifício.

O sistema de detecção e alarme pode ser dividido basicamente em cinco partes:

- 1) Detector de incêndio, que se constitui em partes do sistema de detecção que constantemente ou em intervalos para a detecção de incêndio em sua área de atuação. Os detectores podem ser divididos de acordo com o fenômeno que detectar em:
 - a) térmicos, que respondem a aumentos da temperatura;
 - b) de fumaça, sensíveis a produtos de combustíveis e/ou pirólise suspenso na atmosfera;
 - c) de gás, sensíveis aos produtos gasosos de combustão e/ou pirólise;

 d) de chama, que respondem as radiações emitidas pelas chamas.

Figura 52 - Detector de incêndio

 Acionador manual, que se constitui em parte do sistema destinada ao acionamento do sistema de detecção;

Figura 53 - Acionador manual e sirene

Figura 54 - Detalhe de sirene

- 3) Central de controle do sistema, pela qual o detector é alimentado eletricamente a ter a função de:
 - a) receber, indicar e registrar o sinal de perigo enviado pelo detector;

- b) transmitir o sinal recebido por meio de equipamento de envio de alarme de incêndio para, por exemplo:
 - dar o alarme automático no pavimento afetado pelo fogo;
 - dar o alarme automático no pavimento afetado pelo fogo;
 - dar o alarme temporizado para todo o edifício; acionar uma instalação automática de extinção de incêndio; fechar portas; etc;
 - · controlar o funcionamento do sistema;
 - · possibilitar teste.

Figura 55 - Central de alarme sofrendo inspeção por bombeiro

- 4) Avisadores sonoros e/ou visuais, não incorporados ao painel de alarme, com função de, por decisão humana, dar o alarme para os ocupantes de determinados setores ou de todo o edifício;
- 5) Fonte de alimentação de energia elétrica, que deve garantir em quaisquer circunstâncias o funcionamento do sistema.

O tipo de detector a ser utilizado depende das características dos materiais do local e do risco de incêndio ali existente. A posição dos detectores também é um fator importante e a localização escolhida (normalmente junto à superfície inferior do forro) deve ser apropriada à concentração de fumaça e dos gases quentes.

Para a definição dos aspectos acima e dos outros necessários ao projeto do sistema de detecção automática devem ser utilizadas as normas técnicas vigentes.

- O sistema de detecção automática deve ser instalado em edifícios quando as seguintes condições sejam simultaneamente preenchidas:
 - 1) início do incêndio não pode ser prontamente percebido de qualquer parte do edifício pelos seus ocupantes;

- 2) grande número de pessoas para evacuar o edifício;
- 3) tempo de evacuação excessivo;
- risco acentuado de início e propagação do incêndio;
- 5) estado de inconsciência dos ocupantes (sono em hotel, hospitais etc);
- 6) incapacitação dos ocupantes por motivos de saúde (hospitais, clínicas com internação).

Os acionadores manuais devem ser instalados em todos os tipos de edifício, exceto nos de pequeno porte onde o reconhecimento de um princípio de incêndio pode ser feito simultaneamente por todos os ocupantes, não comprometendo a fuga dos mesmos ou possíveis tentativas de extensão.

Os acionadores manuais devem ser instalados mesmo em edificações dotadas de sistema de detecção automática e/ou extinção automática, já que o incêndio pode ser percebido pelos ocupantes antes de seus efeitos sensibilizarem os detectores ou os chuveiros automáticos.

A partir daí, os ocupantes que em primeiro lugar detectarem o incêndio, devem ter rápido acesso a um dispositivo de acionamento do alarme, que deve ser devidamente sinalizado a propiciar facilidade de acionamento.

Os acionadores manuais devem ser instalados nas rotas de fuga, de preferência nas proximidades das saídas (nas proximidades das escadas de segurança, no caso de edifícios de múltiplos pavimentos). Tais dispositivos devem transmitir um sinal de uma estação de controle, que faz parte integrante do sistema, a partir do qual as necessárias providências devem ser tomadas.

9.5 Sinalização

A sinalização de emergência utilizada para informar e guiar os ocupantes do edifício, relativamente a questões associadas aos incêndios, assume dois objetivos:

- reduzir a probabilidade de ocorrência de incêndio;
- indicar as ações apropriadas em caso de incêndio.

O primeiro objetivo tem caráter preventivo e assume as funções de:

- 1) alertar para os riscos potenciais;
- requerer ações que contribuam para a segurança contra incêndio;

 proibir ações capazes de afetar a segurança contra incêndio.

O segundo objetivo tem caráter de proteção, e assume as funções de:

- 1) indicar a localização dos equipamentos de combate:
- 2) orientar as ações as de combate;
- 3) indicar as rotas de fuga e os caminhos a serem seguidos.

A sinalização de emergência deve ser dividida de acordo com suas funções em seis categorias:

- sinalização de alerta, cuja função é alertar para áreas e materiais com potencial de risco;
- 2) sinalização de comando, cuja função é requerer ações que condições adequadas para a utilização das rotas de fuga;
- sinalização de proibição, cuja função é proibir ações capazes de conduzir ao início do incêndio;
- sinalização de condições de orientação e salvamento, cuja função é indicar as rotas de saída e ações necessárias para o seu acesso;
- 5) sinalização dos equipamentos de combate, cuja função é indicar a localização e os tipos dos equipamentos de combate.

Figura 56 - Sinalização de extintores

- 9.6 Meios de Combate a Incêndio
- 9.6.1 Extintores portáteis e Extintores sobre rodas (carretas).
- O extintor portátil é um aparelho manual, constituído de recipiente e acessório, contendo o agente extintor, destinado a combater princípios de incêndio.

O extintor sobre rodas (carreta) também é constituído em um único recipiente com agente extintor para extinção do fogo, porém com capacidade de agente extintor em maior quantidade.

As previsões destes equipamentos nas edificações decorrem da necessidade de se efetuar o combate ao incêndio imediato, após a sua detecção, em sua origem, enquanto são pequenos focos.

Estes equipamentos primam pela facilidade de manuseio, de forma a serem utilizados por homens e mulheres, contando unicamente com um treinamento básico.

Além disso, os preparativos necessários para o seu manuseio não consomem um tempo significativo, e conseqüentemente, não inviabilizam sua eficácia em função do crescimento do incêndio.

Os extintores portáteis e sobre rodas podem ser divididos em cinco tipos, de acordo com o agente extintor que utilizam:

- 1) água;
- 2) espuma mecânica;
- 3) pó químico seco;
- 4) bióxido de carbono;
- 5) halon.

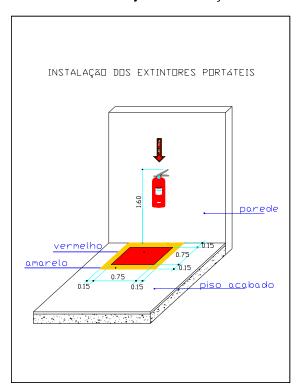
Esses agentes extintores se destinam a extinção de incêndios de diferentes naturezas.

A quantidade e o tipo de extintores portáteis e sobre rodas devem ser dimensionados para cada ocupação em função:

- 1) da área a ser protegida;
- 2) das distâncias a serem percorridas para alcançar o extintor;
- 3) os riscos a proteger (decorrente de variável "natureza da atividade desenvolvida ou equipamento a proteger").

Os riscos especiais como casa de medidores, cabinas de força, depósitos de gases inflamáveis devem ser protegidos por extintores, independentemente de outros que cubram a área onde se encontram os demais riscos.

Os extintores portáteis devem ser instalados, de tal forma que sua parte superior não ultrapasse a 1,60 m de altura em ralação ao piso acabado, e a parte inferior fique acima de 0,20 m (podem ficar apoiados em suportes apropriados sobre o piso);

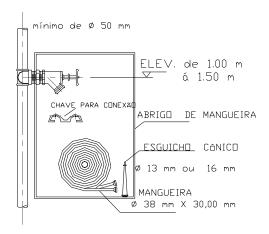

Deverão ser previstas no mínimo, independente da área, risco a proteger e distância a percorrer, duas unidades extintoras, sendo destinadas para proteção de incêndio em sólidos e equipamentos elétricos energizados.

Os parâmetros acima descritos são definidos de acordo com o risco de incêndio do local.

Quanto aos extintores sobre rodas, estes podem substituir até a metade da capacidade dos extintores em um pavimento, não podendo, porém, ser previstos como proteção única para uma edificação ou pavimento.

Tanto os extintores portáteis como os extintores sobre rodas devem possuir selo ou marca de conformidade de órgão competente ou credenciado e ser submetidos a inspeções e manutenções freqüentes.

Figura 57 - Detalhe de instalação de extintores em áreas sujeitas à obstrução



9.6.2 Sistema de hidrantes

É um sistema de proteção ativa, destinado a conduzir e distribuir tomadas de água, com determinada pressão e vazão em uma edificação, assegurando seu funcionamento por determinado tempo.

Sua finalidade é proporcionar aos ocupantes de uma edificação, um meio de combate para os princípios de incêndio no qual os extintores manuais se tornam insuficientes.

Figura 58 - Detalhe de hidrante

; / ESC.

9.6.3 Componentes do Sistema

Os componentes de um sistema de hidrantes são:

- 1) reservatório de água, que pode ser subterrâneo, ao nível do piso elevado;
- 2) sistema de pressurização.

O sistema de pressurização consiste normalmente em uma bomba de incêndio, dimensionada a propiciar um reforço de pressão e vazão, conforme o dimensionamento hidráulico de que o sistema necessitar.

Figura 59 - Registro de recalque para Bombeiros

Quando os desníveis geométricos entre o reservatório e os hidrantes são suficientes para propiciar a pressão e vazão mínima requeridas ao sistema, as bombas hidráulicas são dispensadas.

Seu volume deve permitir uma autonomia para o funcionamento do sistema, que varia conforme o risco e a área total do edifício.

3) Conjunto de peças hidráulicas e acessórios.

São compostos por registros (gaveta, ângulo aberto e recalque), válvula de retenção, esguichos e etc.;


4) Tubulação:

A tubulação é responsável pela condução da água, cujos diâmetros são determinados, por cálculo hidráulico.

5) Forma de acionamento do sistema

As bombas de recalque podem ser acionadas por botoeiras do tipo liga-desliga, pressostatos, chaves de fluxo ou uma bomba auxiliar de pressurização (jockey).

Figura 60 - Isométrica de sistema de hidrantes

O Corpo de Bombeiros, em sua intervenção a um incêndio, pode utilizar a rede hidrantes (principalmente nos casos de edifícios altos). Para que isto ocorra, os hidrantes devem ser instalados em todos os andares, em local protegido dos efeitos do incêndio, nas proximidades das escadas de segurança.

A canalização do sistema de hidrante deve ser dotada de um prolongamento até o exterior da edificação de forma que possa permitir, quando necessário, recalcar água para o sistema pelas viaturas do Corpo de Bombeiros.

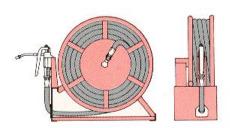
9.6.4 Dimensionamento

O dimensionamento do sistema é projetado:

1) de acordo com a classificação de carga de incêndio que se espera;

- de forma a garantir uma pressão e vazão mínima nas tomadas de água (hidrantes) mais desfavoráveis;
- 3) que assegure uma reserva de água para que o funcionamento de um número mínimo de hidrantes mais desfavoráveis, por um determinado tempo.

Figura 61 - Bomba de incêndio e acessórios hidráulicos



9.6.5 Sistema de Mangotinhos

Um outro sistema que pode ser adotado no lugar dos tradicionais hidrantes internos são os mangotinhos.

Os mangotinhos apresentam a grande vantagem de poder ser operado de maneira rápida por uma única pessoa. Devido a vazões baixas de consumo, seu operador pode contar com grande autonomia do sistema.

Figura 62 - Sistema de mangotinhos

Por estes motivos os mangotinhos são recomendados pelos bombeiros, principalmente nos locais onde o manuseio do sistema é executado por pessoas não habilitadas (Ex.: uma dona de casa em um edifício residencial).

O dimensionamento do sistema de mangotinhos é idêntico ao sistema de hidrantes.

9.6.6 Sistema de chuveiros automáticos ("sprinklers").

O sistema de chuveiros automáticos é composto por um suprimento d'água em uma rede hidráulica sob pressão, onde são instalados em diversos pontos estratégicos, dispositivos de aspersão d'água (chuveiros automáticos), que contém um elemento termo-sensível, que se rompe por ação do calor proveniente do foco de incêndio, permitindo a descarga d'água sobre os materiais em chamas.

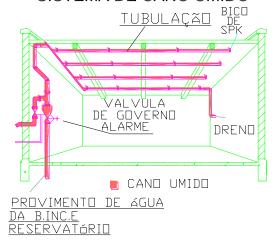

O sistema de chuveiros automáticos para extinção a incêndios possui grande confiabilidade, e se destina a proteger diversos tipos de edifícios.

Figura 63 - Chuveiro automático sob a ação do fogo

Figura 64 - Esquema de uma rede de chuveiro automático

SISTEMA DE CANO UMIDO

Deve ser utilizado em situações:

1) quando a evacuação rápida e total do edifício é impraticável e o combate ao incêndio é difícil;

 quando se deseja projetar edifícios com pavimentos com grandes áreas sem compartimentação.

Pode-se dizer que, via de regra, o sistema de chuveiros automáticos é a medida de proteção contra incêndio mais eficaz quanto à água for o agente extintor mais adequado.

De sua performance, espera-se que:

- 1) atue com rapidez;
- 2) extingua o incêndio em seu início;
- 3) controle o incêndio no seu ambiente de origem, permitindo aos bombeiros a extinção do incêndio com relativa facilidade.

9.6.7 Dimensionamento

O dimensionamento do sistema é feito:

- 4) de acordo com a severidade do incêndio que se espera;
- 5) de forma a garantir em toda a rede níveis de pressão e vazão em todos os chuveiros automáticos, a fim de atender a um valor mínimo estipulado;
- 6) para que a distribuição de água seja suficientemente homogênea, dentro de uma área de influência predeterminada.

9.6.8 Sistema de espuma mecânica.

A espuma mecânica é amplamente aplicada para combate em incêndio em líquidos combustíveis e inflamáveis.

O tipo da espuma, forma e componentes para sua aplicação estão detalhados a seguir.

9.6.9 A espuma

A espuma destinada à extinção dos incêndio é um agregado estável de bolhas, que tem a propriedade de cobrir e aderir aos líquidos combustíveis e inflamáveis, formando uma camada resistente e contínua que isola do ar, e impede a saída para a atmosfera dos vapores voláteis desses líquidos.

Figura 65 - Incêndio em parque de tanques

Sua atuação se baseia na criação de uma capa de cobertura sobre a superfície livre dos líquidos, com a finalidade de:

- 1) Separar combustível e comburente;
- 2) Impedir e reduzir a liberação de vapores inflamáveis;
- 3) Separar as chamas da superfície dos combustíveis;
- 4) Esfriar o combustível e superfícies adjacentes.

9.6.9.1 Aplicação

Sua aplicação destina-se ao combate de fogos de grandes dimensões que envolvam locais que armazenem líquido combustível e inflamável.

Também se destina a:

- 1) extinção de fogos de líquidos de menor densidade que a água;
- 2) prevenção da ignição em locais onde ocorra o derrame de líquidos inflamáveis;
- extingua incêndios em superfície de combustíveis sólidos:
- 4) outras aplicações especiais, tais como derrame de gases na forma líquida, isolamento e proteção de fogos externos, contenção de derrames tóxicos e etc.;
- 5) Estas últimas aplicações dependem de características especiais da espuma, condições de aplicação e ensaios específicos ao caso a ser aplicado.

A espuma não é eficaz em:

- 1) fogo em gases;
- 2) fogo em vazamento de líquidos sobre pressão;

3) fogo em materiais que reagem com a água.

A espuma é um agente extintor condutor de eletricidade e, normalmente, não deve ser aplicada na presença de equipamentos elétricos com tensão, salvo aplicações específicas.

Cuidado especial deve se ter na aplicação de líquidos inflamáveis que se encontram ou podem alcançar uma temperatura superior a ponto de ebulição da água; evitando-se a projeção do líquido durante o combate (slop-over).

9.6.9.2 Características

Os vários tipos de espuma apresentam características peculiares ao tipo de fogo a combater, que as tornam mais ou menos adequadas. Na escolha da espuma devem-se levar em consideração:

- 1) aderência;
- 2) capacidade de supressão de vapores inflamáveis;
- estabilidade e capacidade de retenção de água;
- 4) fluidez;
- 5) resistência ao calor;
- 6) resistência aos combustíveis polares.

9.6.9.3 Tipos de espuma

Os tipos de espuma variam:

- 1) segundo sua origem:
 - a) química, que é obtida pela reação entre uma solução de sal básica (normalmente bicarbonato de sódio), e outra de sal ácida (normalmente sulfato de alumínio), com a formação de gás carbônico na presença de um agente espumante. Este tipo de espuma é totalmente obsoleto e seu emprego não está mais normatizado.
 - b) Física ou mecânica, que é formada ao introduzir, por agitação mecânica, ar em uma solução aquosa (pré-mistura), obtendo-se uma espuma adequada. Esta é o tipo de espuma mais empregada atualmente.
- 2) segundo a composição:
 - a) Base proteínica, que se dividem:
 - Proteínicas, que são obtidas pela hidrólise de resíduos proteínicos

naturais. Caracteriza-se por uma excelente resistência à temperatura.

- Fluorproteínicas, que são obtidas mediante a adição de elementos fluorados ativos a concentração proteínica, da qual se consegue uma melhora na fluidez e resistência a contaminação.
- b) Base sintética.
- 3) segundo ao coeficiente de expansão:

O coeficiente de expansão é a relação entre o volume final de espuma e o volume inicial da prémistura. E se dividem em:

- a) Espuma de baixa expansão, cujo coeficiente de expansão está entre 3 e 30;
- b) Espuma de média expansão, cujo coeficiente de expansão está entre 30 e 250:
- c) Espuma de alta expansão, cujo coeficiente de expansão está entre 250 e 1.000.
- 4) segundo as características de extinção;
 - a) Espuma convencional, que extingue somente pela capa de cobertura de espuma aplicada;
 - b) Espuma aplicadora de película aquosa (AFFF), que forma uma fina película de água que se estende rapidamente sobre a superfície do combustível.
- 9.6.10 Espuma antiálcool, que forma uma película que protege a capa de cobertura de espuma frente à ação de solventes polares.

9.6.11 Tipos de Sistemas

Os sistemas de espuma são classificados conforme:

- 1) a sua capacidade de mobilidade em:
 - a) Fixos, que são equipamentos para proteção de tanque de armazenamento de

combustível, cujos componentes são fixos, permanentemente, desde a estação geradora de espuma até à câmara aplicadora;

Figura 66 - Sistema fixo de espuma

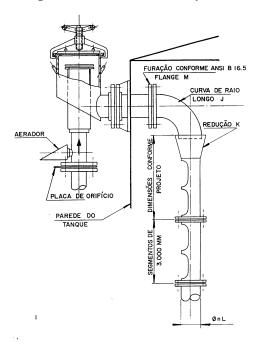
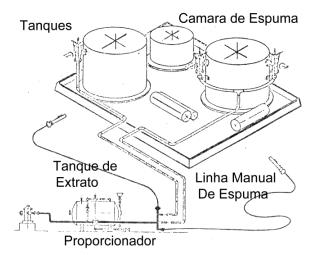
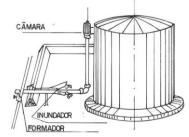




Figura 67 – Sistema semi-fixo

b) Semifixos, que são equipamentos destinados à proteção de tanque de armazenamento de combustível, cujos componentes, permanentemente fixos, são complementados por equipamentos móveis para sua operação. normalmente, móveis o reservatório de extrato conjunto dosador е (proporcionador).

Figura 68 - Detalhe de câmara de espuma

ABASTECIMENTO POR VIATURAS

- c) Móveis, que são as instalações totalmente independentes, normalmente veículos ou carretas, podendo se locomover e aplicar aonde forem necessários, requerendo somente sua conexão a um abastecimento de água adequado.
- 2) Segundo a sua forma de funcionamento, que pode ser:
 - a) automático;
 - b) semi-automático:
 - c) manual.

9.6.12 Componentes do Sistema

1) Reserva (tanque) de extrato São reservatórios, tanques nos quais se armazena a quantidade de líquido gerador de espuma necessária para o funcionamento do sistema.

Deve dispor dos seguintes componentes básicos:

- a) Indicador de nível, com válvula de isolamento;
- b) registro para abertura e fechamento;
- c) conexão para enchimento e esvaziamento;
- d) conexão para o proporcionador;
- e) domo de expansão (espaço), preferencialmente com válvula de pressão-vácuo.

O material com que é construído o tanque de extrato deve ser adequado ao líquido gerador que armazena (problemas de corrosão e etc.).

2) Elemento dosador (proporcionador)

São equipamentos responsáveis pela mistura do líquido gerador de espuma e a água, na proporção adequada para formação da espuma que se deseja.

Seu funcionamento se baseia no efeito "venturi", que é passagem da água proporcionando a sucção do líquido gerador de espuma na dosagem preestabelecida.

Normalmente funcionam com pressões acima de 7 bar para permitir que proceda a pré-mistura necessária.

A proporção é fundamental para permitir uma espuma eficiente ao combate ao fogo que se espera.

Normalmente a proporção é de 3% para hidrocarburentes e 6% para combustíveis polares.

Bombas hidráulicas para dosificar a prémistura

Também denominado de dosificação por equilíbrio de pressão, consiste em uma bomba hidráulica que possibilita uma regulagem automática da proporção de pré-mistura, sobre uma grande demanda de vazão necessária.

Esta regulagem consiste de orifícios calibrados no proporcionador, com uma válvula diafragma que controla a pressão da linha de extrato, em função do diferencial de pressão entre está e a linha de abastecimento de água.

4) Esguichos e canhões lançadores de espuma

São elementos portáteis e fixos, cuja função é dar forma a espuma de baixa e média expansão e fazela atingir ao tanque de combustível em chama.

Os esguichos lançadores (linhas manuais) podem ou não possuir um dosificador em seu corpo (proporcionador).

A diferença de emprego entre o esguicho lançador de espuma e os canhões de espuma está na capacidade de lançar e alcançar os tanques no que tange sua altura.

Os esguichos são recomendados para tanques até 6m de altura, enquanto que os canhões atingem alturas mais elevadas.

Os esguichos de espuma são recomendados como complemento de apoio às instalações fixas, pois como medida de proteção principal, expõem os operadores a sérios riscos .

5) Câmaras de espuma

São elementos especialmente projetados para a aplicação de espuma de baixa expansão, sobre a superfície de combustíveis contidos em tanques de armazenamento de grande diâmetro e altura.

Tem a característica de aplicar a espuma no interior do tanque em chamas por meio da descarga na parede do tanque. Pode ser constituído de elementos especiais no interior do tanque, que fazem com que a espuma caia de forma mais suave sobre a superfície do líquido.

É composta por um selo de vidro que impede a saída de vapores voláteis do interior do tanque, mas que se rompem quando o sistema entra em funcionamento, permitindo a passagem da espuma.

Dispõe também de uma placa de orifício que regula a pressão, de forma a possibilitar a formação de uma espuma adequada.

É utilizada para tanque acima de 10 m de altura e ou diâmetro superior a 24m, normalmente em tanque de teto fixo, podendo também ser projetada para tanques de teto flutuante.

6) Geradores de alta expansão

São elementos de geração e aplicação de espuma de alta expansão, formando uma espuma com uma maior proporção de ar.

São compostos por um ventilador que podem ser acionados por um motor elétrico, ou pela própria passagem da solução de pré-mistura.

Podem ser do tipo móvel ou fixo, aplicando a espuma diretamente ou por meio de mangas e condutos especialmente projetados.

Sua pressão de funcionamento varia de 5 a 7 bar.

7) Tubulações e acessórios

As tubulações são responsáveis pela condução da água ou pré-mistura para os equipamentos que formam ou aplicam espuma.

Deve ser resistente à corrosão.

Quantos aos acessórios, estes devem resistir a altas pressões uma vez que os sistemas de espuma, normalmente, trabalham com valores elevados de pressão, decorrente das perdas de carga nos equipamentos e pressões mínimas para a formação da espuma.

9.6.13 Dimensionamento

O dimensionamento do sistema varia conforme o tipo, dimensão e arranjo físico dos locais que armazenam líquidos inflamáveis e combustíveis, devendo seguir as normas técnicas oficiais e Instruções Técnicas baixadas pelo Corpo de Bombeiros.

A reserva de incêndio também varia conforme o tamanho das áreas de armazenamento, mas possuem capacidade de reserva maior que aos destinados a sistema de hidrantes.

9.6.14 Sistema fixo de CO₂.

O sistema fixo de baterias de cilindros de CO₂, consiste de tubulações, válvulas, difusores, rede de detecção, sinalização, alarme, painel de comando e

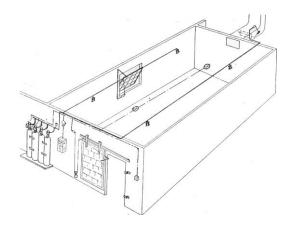
acessórios, destinado a extinguir incêndio por abafamento, por meio da descarga do agente extintor.

Seu emprego visa à proteção de locais onde o emprego de água é desaconselhável, ou locais cujo valor agregado dos objetos e equipamentos é elevado nos quais a extinção por outro agente causará a depreciação do bem pela deposição de resíduos.

É recomendado normalmente nos locais onde se buscam economia e limpeza, e naqueles que o custo agente/instalação é muito mais inferior do que outro agente extintor empregado.

Possui uma efetiva extinção em:

- 1) Fogos de classe "B" e "C" (líquidos inflamáveis e gases combustíveis, e equipamentos elétricos energizados de alta tensão), em:
 - a) recintos fechados, por inundação total, onde o sistema extingue pelo abafamento, baixando-se a concentração de oxigênio do local necessária para a combustão, criando uma atmosfera inerte.
 - b) recintos abertos, mediante aplicação local sob determinada área.
- 2) Fogos de Classe "A" (combustíveis sólidos):
 - a) decorrente de seu efeito de resfriamento, nos incêndio em sólidos, em que o fogo é pouco profundo e o calor gerado é baixo;
 - b) nos usos de inundação total, aliados a uma detecção prévia, a fim de evitar a formação de brasas profundas;
 - c) nos usos de aplicação local, leva-se em conta o tipo e disposição do combustível, uma vez que a descarga do CO_2 impedirá a extinção nas regiões não acessíveis diretamente pelo sistema.


O sistema não é capaz de extinguir:

- fogos em combustíveis (não pirofóricos) que não precisam de oxigênio para a sua combustão, pois permitem uma combustão anaeróbia;
- 2) fogos em combustíveis de classe "D" (materiais pirofóricos);

Os tipos de sistema são:

- 1) Inundação total, onde a descarga de CO², é projetada para uma concentração em todo o volume do risco a proteger;
- 2) Aplicação local, onde o CO₂ é projetado sobre elementos a proteger não confinados;
- 3) Modulares, que consiste em um pequeno sistema de inundação total instalado no interior dos compartimentos dos equipamentos a proteger.

Figura 69 - Sistema de CO₂

9.6.15 Componentes do sistema

Os componentes dos sistemas são:

1) Cilindros, que contém o agente extintor pressurizado, onde a própria pressão do cilindro será utilizada para pressurização do sistema, sendo responsáveis pela descarga dos difusores.

Sua localização deve ser próxima a área/ equipamento a proteger, a fim de evitar perdas de carga; diminuir a possibilidade de danos à instalação e baratear o custo do sistema; mas não deve ser instalada dentro da área de risco, devendo ficar em local protegido (exceto para os sistemas modulares).

Os cilindros devem ser protegidos contra danos mecânicos ou danos causados pelo ambiente agressivo.

No conjunto de cilindros, há um destinado a ser "cilindro-piloto", cuja função é, mediante acionamento de um dispositivo de comando,

estabelecer um fluxo inicial do agente, a fim de abrir por pressão as demais cabeças de descarga dos demais cilindros da bateria.

Os cilindros podem ser de dois tipos:

- a) Alta pressão, na qual o CO_2 encontra-se contido a uma temperatura de $20^{\circ}C$ e uma pressão de 60bar. Este sistema é o mais comum.
- b) Baixa pressão, na qual o CO_2 encontrase resfriado a -20°C e com uma pressão de 20bar.
- 2) Cabeça de descarga, que consiste de um dispositivo fixo adaptado à válvula do cilindro, a fim de possibilitar sua abertura e conseqüente descarga ininterrupta do gás.
- 3) Tubulação e suas conexões, responsáveis pela condução do agente extintor devem ser resistentes a pressão, a baixa temperatura e a corrosão, tanto internamente como externamente. Devem resistir a uma pressão de ruptura 5,5 vezes maior que a pressão nominal do cilindro:
- 4) Válvulas, com a função de direcionamento (direcional) do agente extintor ou de purga do coletor de distribuição de gás (evitar que fugas do sistema acionem os difusores fechados). Essas válvulas devem resistir a uma pressão de ruptura 7 vezes maior que a pressão nominal do cilindro;
- 5) Difusores, que consiste de dispositivo fixo de funcionamento automático, equipado com espalhador de orifícios calibrados, destinados a proporcionar a descarga do CO_2 sem congelamento interno e com espalhamento uniforme;

9.6.16 Brigada de Incêndio

Os dimensionamentos dos sistemas devem atender às especificações contidas nas normas técnicas adotadas pelo Corpo de Bombeiros, por meio de Instrução Técnica.

Treinamento

A população do edifício deve estar preparada para enfrentar uma situação de incêndio, quer seja adotando as primeiras providências no sentido de controlar o incêndio, quer seja abandonando o edifício de maneira rápida e ordenada.

Para isto ser possível é necessário como primeiro passo, a elaboração de planos para enfrentar a situação de emergência que estabeleçam em função dos fatores determinantes de risco de incêndio, as ações a serem adotadas e os recursos materiais e humanos necessários. A formação de uma equipe com este fim específico é um aspecto

importante deste plano, pois permitirá a execução adequada do plano de emergência.

Essas equipes podem ser divididas em duas categorias, decorrente da função a exercer:

- 1) Equipes destinadas a propiciar o abandono seguro do edifício em caso de incêndio.
- 2) Equipe destinada a propiciar o combate aos princípios de incêndio na edificação.

Em um edifício pode ocorrer que haja esta equipe distinta ou executada as funções simultaneamente.

Figura 70 - Treinamento de brigada de incêndio

Tais planos devem incluir a provisão de quadros sinóticos em distintos setores do edifício (aqueles que apresentem parcela significativa da população flutuante como, por exemplo, hotéis) que indiquem a localização das saídas, a localização do quadro sinótico com o texto " você está aqui" e a localização dos equipamentos de combate manual no setor.

Por último deve-se promover o treinamento periódico dos brigadistas e de toda a população do edifício.

Figura 71 - Plano de abandono

9.7 Planta de Risco

É fundamental evitar qualquer perda de tempo quando os bombeiros chegam ao edifício em que está ocorrendo o incêndio. Para isto é necessário existir em todas as entradas do edifício (cujo porte pode definir dificuldades as ações dos bombeiros) informações úteis ao combate, fáceis de entender, que localizam por meio de plantas os seguintes aspectos:

- 1) ruas de acesso;
- 2) saídas, escadas, corredores e elevadores de emergência;
- 3) válvulas de controle de gás e outros combustíveis;
- 4) chaves de controle elétrico;
- 5) localização de produtos químicos perigosos;
- 6) reservatórios de gases liquefeitos, comprimidos e de produtos perigosos.

Figura 72 - Bateria de GLP

7) registros e portas corta-fogo, que fecham automaticamente em caso de incêndios e botoeiras para acionamento manual destes dispositivos;

Figura 73 - Caldeira

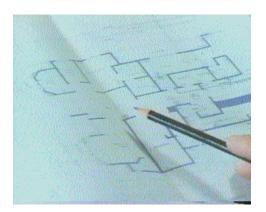

- 8) pontos de saídas de fumaça;
- 9) janelas que podem ser abertas em edifícios selados;
- 10) painéis de sinalização e alarme de incêndio;
- 11) casa de bombas do sistema de hidrantes e de chuveiros automáticos:

Figura 74 - Casa de máquinas dos elevadores

- 12) extintores etc.
- 13) sistema de ventilação e localização das chaves de controle;
- 14) sistemas de chuveiros automáticos e respectivas válvulas de controle;
- 15) hidrantes internos e externos e hidrantes de recalque e respectivas válvulas de controle;

Figura 75 - Planta de risco

